HADAMARD INEQUALITIES FOR WRIGHT-CONVEX FUNCTIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

Fejér Inequalities for Wright-convex Functions

In this paper, we establish several inequalities of Fejér type for Wrightconvex functions. Fejér Inequalities for Wright-convex Functions Ming-In Ho vol. 8, iss. 1, art. 9, 2007

متن کامل

Hadamard-type inequalities for s-convex functions

In this paper we establish some new inequalities for differentiable functions based on concavity and s-convexity. We also prove several Hadamard-type inequalities for products of two convex and s-convex functions. 2007 Elsevier Inc. All rights reserved.

متن کامل

Fractional Hermite-Hadamard type inequalities for n-times log-convex functions

In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2004

ISSN: 2391-4661

DOI: 10.1515/dema-2004-0304